

Area Study: Jackson, Lavaca, and Wharton Counties

Evaluation of Natural Resources in Lavaca Water Planning Area (Region P)

Wetlands in Lake Texana State Park (D.W. Moulton)

RESOURCE PROTECTION DIVISION: WATER RESOURCES TEAM

Evaluation of Natural Resources in Lavaca Water Planning Area (Region P)

By: Albert El-Hage Peter D. Sorensen Daniel W. Moulton

October 1999

TABLE OF CONTENTS

Pages

Tables	ii
Figures	ii
Acknowledgments	iii
EXECUTIVE SUMMARY	1
INTRODUCTION	2
Location and Extent	2
Geography and Ecology	2
Population	2
Economy and Land Use	5
SELECTED NATURAL RESOURCES	5
Soils	5
Vegetation	8
Rivers and Reservoirs	10
Wetlands	11
Springs	13
Gulf Coast Aquifer	13
Freshwater Mussels	14
Fish	15
Birds and Waterfowl	19
Mammals, Amphibians, and Reptiles	19
CONCLUSIONS	22
REFERENCES	23
APPENDIX A: Scientific Names of Plants Mentioned	25
APPENDIX B: Lake Texana State Park Economic Data	28
APPENDIX C: TPWD Information Supporting River and Stream Segment	
Designations	31
APPENDIX D: §357.8 Ecologically Unique River and Stream Segments	33

TABLES

Pages

1.	Projections for Population Growth in the Study Area	2
2.	Soil Associations of the Study Area	6
3.	Streams that meet the high water quality/exceptional aquatic life/high aesthetic value criteria	10
4.	Streams that meet the threatened or endangered species/unique community criteria	10
5.	Distribution and Estimated Size (in 1980) of Springs and Seeps in the Study Area.	13
6.	Freshwater Mussels	14
7.	Fish Species Reported in the Study Area	15
8.	Species of Special Concern in the Study Area	17
9.	Mammals of the Study Area	20
10.	Amphibians of the Study Area	20
11.	Reptiles of the Study Area	21

FIGURES

1.	Location of the Study Area	3
2.	Water Resources of the Study Area	4
3.	Soil Types of the Study Area	7
4.	Vegetation Types of the Study Area	9
5.	Aerial DOQ of Lavaca-Navidad Estuary and Lavaca River Forested Wetlands	12
6.	Special Species by County	18

Acknowledgments

The authors wish to thank those individuals who cooperated in providing information on the selected natural resources in the study area. Additional thanks are given to those individuals whose comments and proofreading allowed us to produce this report. We appreciate and acknowledge the help and expertise of Gordon Linam, Cindy Loeffler, and David Bradsby.

EXECUTIVE SUMMARY

The study area is located in the mid-coastal region of Texas and includes Jackson and Lavaca counties, and part of Wharton County. It is located within the Lavaca, Colorado-Lavaca, Guadalupe, and Lavaca-Guadalupe river basins.

Drainage of the study area is by the Lavaca and Navidad rivers and their tributaries. Elevations range from sea level in Jackson County to about 503 feet in Lavaca County. The study area is entirely within the Upland Prairie and Woods natural subregion. The land surface of the area is generally rolling to prairie.

The economy of the area consists primarily of petroleum production and operations, agribusiness and tourism. Agricultural production is varied. It consists of cattle, poultry, corn, cotton, and rice with rice being the principal crop for Wharton County. The market value for the agriculture in the study area is around \$192.4 million. Outdoor recreational facilities also contribute to the area's economy. The Lavaca-Navidad estuary, the estuarine wetlands along the east side of Garcitas Creek and Lake Texana provide opportunities for bird watching, fishing, waterfowl hunting, boating, and other water sports. All these areas are located in Jackson County.

The natural regions of Texas were delineated largely on the basis of soil types and major vegetation types. Soils in the study area vary from alluvial, sandy soils with loamy surface to black waxy soils with loamy or sandy surface. Most of the region is on the Beaumont and Lissie Geological Formations.

There are seven major vegetation types found in the study area (Figure 4). The main vegetation types are Crops, and Post Oak Woods/Forest, followed closely by Post Oak Woods, Forest and Grassland Mosaic. The Pecan-Elm Forest, Other Native or Introduced Grasses, Bluestem Grassland, and Marsh/Barrier Island types are also found with decreasing distributions, respectively, in the study area.

Region P has a variety of valuable aquatic, wetland, riparian, and estuarine habitats. The estuary of the Lavaca and Navidad Rivers, in Jackson County, provides habitats for economically important marine and estuarine animals as well as for freshwater and terrestrial animals.

The region has 5 rivers or stream segments that satisfy one or more of the criteria defined in Senate Bill 1 for ecologically unique river and stream segments. These are in Jackson and Wharton Counties.

INTRODUCTION

Location and Extent

The study area is located in the mid-coastal region of Texas and includes Jackson and Lavaca counties, and part of Wharton County (Figure 1). It is located within the Lavaca, Colorado-Lavaca, Guadalupe, and Lavaca-Guadalupe river basins (Figure 2).

Geography and Ecology

Drainage of the study area is by the Lavaca and Navidad rivers and their tributaries. Elevations range from about sea level in Jackson County to about 503 feet in Lavaca County (Dallas Morning News 1997). The study area includes the Uplands Prairie and Woods natural subregion (Lyndon B. Johnson School of Public Affairs 1978). The land surface of the area is generally rolling to prairie (Dallas Morning News 1997).

Long, hot summers and short, mild winters characterize the study area's climate. The average daily minimum temperature for January is about 41.5?F and the average daily maximum temperature for July is about 93.7?F. The average annual precipitation is 40 inches (Dallas Morning News 1997).

Population

The 1990 census estimated the population of the study area to be 45,039 (Table 1, TWDB 1998). TWDB (1998) predicted a 2050 population of 58,958. Moderate increase in population is projected for all three counties, Jackson, Lavaca, and Wharton.

	Year ?							
County?	City ?	1990	2000	2010	2020	2030	2040	2050
Jackson		13,039	14,748	14,984	15,040	15,058	15,076	15,085
Jackson	Edna	5,343	6,193	6,324	6,355	6,365	6,375	6,385
Jackson	Ganado	1,701	1,892	1,922	1,928	1,930	1,932	1,934
Jackson	County-other	5,995	6,663	6,738	6,757	6,763	6,769	6,766
Lavaca		18,690	20,764	21,507	22,193	23,264	24,398	25,648
Lavaca	Hallettsville	2,718	3,052	3,257	3,413	3,626	3,828	4,041
Lavaca	Moulton	923	936	950	963	977	991	1,005
Lavaca	Shiner	2,074	2,348	2,432	2,510	2,631	2,759	2,901
Lavaca	Yoakum (P)	3,457	3,919	4,059	4,188	4,390	4,604	4,840
Lavaca	County-other	9,518	10,509	10,809	11,119	11,640	12,216	12,861
Wharton	(P)	13,310	13,830	14,615	15,501	16,325	17,241	18,225
Wharton	El Campo	10,511	10,851	11,355	11,961	12,486	13,100	13,744
Wharton	County-other	2,799	2,979	3,260	3,540	3,839	4,141	4,481
	Total	45,039	49,342	51,106	52,734	54,647	56,715	58,958

Table 1.	Projections	for Population	Growth in the Study	y Area (TWDB	1998)
----------	-------------	----------------	---------------------	--------------	-------

*P- partial

Economy and Land Use

The economy of the area consists primarily of petroleum production and operation, agribusiness and tourism. Agricultural production is varied. It consists of cattle, poultry, corn, cotton, and rice, with rice being the principal crop for Wharton County. The market value for the agriculture in the study area is around \$192.4 million (Dallas Morning News 1997).

Outdoor recreational facilities also contribute to the area's economy. Lake Texana, the estuarine areas of the Lavaca River, and Garcitas Creek provide opportunities for bird watching, fishing, waterfowl hunting, boating, and other water sports. All these areas are located in Jackson County.

The Texana Loop of the Great Texas Coastal Birding Trail (Central Texas Coast) includes 9 sites (Sites 17-25), all in Jackson County, on Lake Texana, the Lavaca/Navidad estuary, and on Arenosa/Garcitas Creek. Lake Texana SP alone contributes \$ 5-6 million per year to the local economy in Jackson County (see Appendix B).

SELECTED NATURAL RESOURCES

Soils

The natural regions of Texas were delineated largely on the basis of soil types and major vegetation types. Soils in the study area vary from alluvial, sandy soils with loamy surface to black waxy soils with loamy or sandy surface (Godfrey et al. 1973). Soil associations found in the area are described as follows:

- 1. Level soils of the coast Prairie and Marsh
 - (a) Somewhat poorly to moderatly well drained cracking clayey soils; and mostly poorly drained soils with loamy surface layers and cracking clayey subsoils: Vertisols.
 - (b) Cracking clayey soil and friable loamy soils of the Brazos and Colorado River flood plains: Mollisols.
 - (c) Soils with loamy surface layers and mottled clayey or mottled to gray loamy subsoils: Alfisols.
- 2. Undulating alkaline to slightly acid soils of the Blackland Prairie
 - (a) Slightly acid soils with loamy surface layers and cracking clayey subsoils; and noncalcareous cracking clayey soils: Alfisols
 - (b) Noncalcareous and calcareous cracking clayey soils; and slightly acid soils with loamy surface layers: Vertisols.
 - (c) Soils with loamy surface layers and mottled gray and red or yellow cracking clayey subsoils: Alfisols.

Soil Association Soil Name	
TX036	Austwell-Aransas-Placedo
TX135	Denhawken-Elmendorf-Hallettsville
TX187	Frelsburg-Carbengle-Hallettsville
TX214	Hallettsville-Dubina-Straber
TX241	Inez-Milby-Kuy
TX277	Lake Charles-Dacosta-Contee
TX301	Livia-Palacios-Francitas
TX352	Morales-Cieno-Inez
TX356	Nada-Telferner-Cieno
TX359	Lavaca-Navidad-Ganado
TX520	Singleton-Burlewash-Shiro
TX535	Straber-Tremona-Catilla
TX540	Swan-Aransas-Placedo
TX550	Telferner-Edna-Cieno
TX553	Texana-Edna-Cieno
TXW	Water

 Table 2. Soil Associations of the study area

Vegetation

As stated in the introduction, the study area includes parts of the following natural subregions: Blackland Prairie, and the Upland Prairies and Woods subregions (Lyndon B. Johnson School of Public Affairs 1978).

There are seven major vegetation types found in the study area (Figure 4). The main vegetation types are Crops, and Post Oak Woods/Forest, followed closely by Post Oak Woods, Forest and Grassland Mosaic, Pecan-Elm Forest, Other Native or Introduced Grasses, Bluestem Grassland, and Marsh/Barrier Island are also found with decreasing distributions, respectively, in the study area. The scientific names for the plants mentioned below can be found in Appendix A (McMahan et al. 1984).

Commonly associated plants of the Crops type are: cultivated cover crops or row crops providing food and/or fiber for either man or domestic animals. This type also includes grassland associated with crop rotation.

Commonly associated plants of the Post Oak Woods/Forest, and Post Oak Woods, Forest, and Grassland Mosaic vegetation types are: Post oak, blackjack oak, eastern redcedar, mesquite, black hickory, live oak, sandjack oak, cedar elm, hackberry, yaupon, poison oak, American beautyberry, hawthorn, supplejack, trumpet creeper, dewberry, coral-berry, little bluestem, silver bluestem, sand lovegrass, beaked panicum, three-awn, sprangle-grass, and tickclover. These vegetation types are most apparent on the sandy soils of the Post Oak Savannah.

Pecan-Elm Forest includes: Pecan, American elm, cedar elm, cottonwood, sycamore, black willow, live oak, green ash, bald cypress, water oak, hackberry, virgin's bower, yaupon, greenbrair, mustang grape, poison oak, Johnsongrass, Virginia wildrye, Canada wildrye, rescuegrass, frostweed, and western ragweed.

Other Native or Introduced Grasses include: mixed native or introduced grasses and forbs on grassland sites or mixed herbaceous communities resulting from the clearing of woody vegetation. This type is associated with the clearing of forests and may portray early stages of Young Forest.

Bluestem Grassland includes: bushy bluestem, slender bluestem, little bluestem, silver bluestem, three-awn, buffalograss, bermudagrass, brownseed paspalum, single-spike paspalum, smutgrass, Gulf cordgrass, windmillgrass, southern dewberry, live oak, mesquite, huisache, baccharis, and Macartney rose.

Marsh/Barrier Island includes: marshhay cordgrass, Olney's bulrush, saltmarsh bulrush, widgeongrass, California bulrush, seashore paspalum, Gulf cordgrass, and common reed.

Rivers and Reservoirs

The study area includes four river basins: Lavaca, Colorado-Lavaca, Guadalupe, and Lavaca-Guadalupe river basins (Figure 2). Two major rivers run through the study area (Figure 1): the Lavaca River, in the northwest portion of the study area, and the Navidad River, in the northeast portion of the study area. The Navidad River flows into Lake Texana, the only lake in the study area. Lake Texana covers 11,000 surface acres, with approximately 125 miles of shoreline.

Texas Parks and Wildlife Department drafted a list (See Appendix C for Region P List) of Texas streams and rivers (Figure 2) satisfying at least one of the criteria (See Appendix D) for ecologically unique river and stream segments. Four (Table 3); streams met the high water quality/exceptional aquatic life/high aesthetic value criteria, while the threatened or endangered species/unique communities criteria was met by 2 streams (Table 4). Two stream segments, the Lavaca River and Garcitas Creek, were found to meet the biological function criteria (Appendix C).

Table 3. Streams that meet the high water quality/exceptional aquatic life/high aesthetic value criteria (31 TAC §357.8 (b) (4)); (Bayer et al. 1992; Davis, J.R. 1998) Refer to Appendix C.

River or Stream	County	Criteria
Segment		
Arenosa Creek	Jackson	Ecoregion Stream; Benthic macroinvertebrates
Garcitas Creek	Jackson	Ecoregion Stream, Dissolved oxygen; Benthic
		macroinvertebrates
West Carancahua Creek	Jackson	Ecoregion Stream, Dissolved oxygen; Benthic
		macroinvertebrates
West Mustang Creek	Jackson	Ecoregion Stream; Benthic macroinvertebrates
West Mustang Creek	Wharton	Ecoregion Stream; Benthic macroinvertebrates

Table 4. Streams that meet the threatened or endangered species/unique community criteria (31 TAC §357.8 (b) (5); (Ortego, B. 1999))

River or Stream Segment	County	Threatened/endangered species
Garcitas Creek	Jackson	Texas palmetto; Diamondback terrapin
Lavaca River	Jackson	Diamondback terrapin

Wetlands

The study area has significant wetland resources. There are extensive forested wetlands (pecan-elm bottomland forests) occurring along the Lower Lavaca River in Jackson County (Figure 4); north of Lake Texana along Sandy Creek and its tributaries in Jackson and western Wharton counties, along the Navidad River west of Lake Texana; and along West and East Carancahua Creeks in southeastern Jackson County.

Rather extensive estuarine wetlands occur in southwestern Jackson County (Figures 4 & 5). The Lavaca/Navidad estuary wetlands extend from the juncture of the two rivers at FM 616 about 10 miles downstream to Lavaca Bay. The lakes, marshes, and flats of this area (Figure 5) provide habitat for estuarine fish and shellfish, freshwater river fishes, birds, mammals, reptiles, and amphibians. The same is true for the estuarine wetlands along Garcitas Creek, which forms part of the western Jackson County line.

Lake Texana supports fringing freshwater wetlands including emergent marshes, pecanelm bottomlands, and beds of floating aquatic plants. Lake Texana State Park (575 acres), located on the west-central shore of the lake, has all these wetland types (See cover photo).

There are nine sites on the Great Texas Coastal Birding Trail (the Texana Loop) in Jackson County. Six of these are associated with forested riparian habitats fringing Lake Texana as well as the Lake itself. The other three are associated with the estuarine and riparian habitats of the Lavaca/Navidad estuary and Garcitas/Arenosa Creeks.

Springs

The distribution and size, as of 1980, of springs and seeps in the area are given by county, in Table 5 (Brune 1981). Brune conducted most of the fieldwork, which produced the following information, during the period of February 11-17, 1977. Information on Lavaca County springs was not available at the time.

Jackson and Wharton Counties springs are not numerous or large due to the relatively flat topography of the Counties. Spring waters in the county are generally of the sodium bicarbonate type, hard, and alkaline (Brune 1981).

County	Large	Moderately large	Medium	Small	Very small	Seep	Former
Jackson	0	0	0	1	0	0	5
Lavaca	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Wharton	0	0	0	0	0	1	3

Table 5. Distribution and Estimated Size (in 1980) of Springs and Seeps in the Study Area
 (Brune 1981)

The numbers above are a reflection of either a spring or a group of springs.Codes:Large = 280 to 2,800 cfsSmall = 0.28 to 2.8 cfsModerately large = 28 to 280 cfsVery Small = 0.028 to 0.28 cfsMedium = 2.8 to 28 cfsSeep = less than 0.028 cfsFormer = no flow or inundatedSeep = less than 0.028 cfs

Gulf Coast Aquifer

The Gulf Coast Aquifer forms an irregular shaped belt along the Gulf of Mexico from Florida to Mexico. In Texas, the aquifer provides water to all or parts of 54 counties and extends from the Rio Grande northeastward to the Louisiana-Texas border. Total pumpage was approximately 1.1 million acre-feet in 1994. Municipal pumpage accounted for 51 percent of the total, irrigation accounted for 36 percent, and industrial accounted for 12 percent. The Greater Houston Metropolitan Area is the largest user (Texas Water Development Board 1997).

Water quality is generally good in the shallower portion of the aquifer. Groundwater containing less than 500 mg/l dissolved solids is usually encountered to a maximum depth of 3,200 feet in the aquifer from San Antonio River Basin northeastward to Louisiana. From the San Antonio River Basin southward to Mexico, quality deterioration is evident in the form of increased chloride concentration and salt-water encroachment along the coast (Texas Water Development Board 1997).

Freshwater Mussels

Freshwater mussels (Family Unionidae) are sensitive biological indicators of environmental quality and are often the first organisms to decline when environmental quality of aquatic ecosystems begins to degrade (Howells et al. 1996). Consequently, freshwater mussels have become important elements of environmental impact considerations. Surveys of mussels in Texas show many of the 52 species recognized in the state have declined greatly in recent years. These population declines probably reflect poor land and water management practices and subsequent loss of mussel habitat (Howells et al. 1997). Over-grazing, the clearing of native vegetation, the design and construction of highways and bridges, and general land clearing and development have contributed to the increase of runoff and scouring floods. Scouring in upstream reaches often results in excessive deposits of soft silt or deep shifting sand on downstream substrates, eliminating mussel habitat. Mussels with reported occurrence in the study area are shown in Table 6.

Scientific Name	Common Name
Amblema plicata	Threeridge
Anodonta grandis	Giant floater
Anodonta imbecillis	Paper pondshell
Arcidens confragosus	Rock-pocket book
Cyrtonais tampicoensis	Tampico pearlymussel
Glebula rotundata	Round pearlshell
Lampsilis bracteata	Texas fatmucket
Lampsilis teres	Yellow sandshell
Leptodea fragilis	Fragile papershell
Ligumaia subrostrata	Pond mussel
Potamilus ohiensis	Pink papershell
Potamilus purpuratus	Bleufer
Quadrula apiculata	Southern Mapleleaf
Quadrula houstonensis	Smooth pimpleback
Toxolasma texasensis	Texas lilliput
Truncilla macrodon	Texas fawnsfoot
Uniomerus declivis	Tapered pondhorn
Uniomerus tetralasmus	Pondhorn

Table 6. Freshwater Mussels (Howells et al. 1996)

Fish

Most Texas estuaries that receive freshwater inflow from rivers provide habitats for over 200 species of fish and shellfish. Many of these are important to the commercial and recreational fishing industries. Species such as brown, white and pink shrimp, oysters, blue crab, redfish, sea trout, and flounder are very important to the economy of the Texas coast. The estuarine habitats of Jackson County contribute to this economy.

One of the species of fish reported in the area (Table 7) is included on the Special Species List (Table 8) produced by the Texas Parks and Wildlife Department (1998a). This species is Guadalupe bass, it is the official state fish of Texas (Hubbs et. al 1991). The Guadalupe bass is endemic to the streams of the northern and eastern Edwards Plateau including portions of the Brazos, Colorado, Guadalupe, and San Antonio basins.

Species	Common Name
Ameiurus melas	Black bullhead
Ameiurus natalis	Yellow bullhead
Anguilla rostrata	American eel
Aplodinotus grunniens	Freshwater drum
Astyanax mexicanus	Mexican tetra
Campostoma anomalum	Central stoneroller
Carassius auratus	Goldfish
Carpiodes carpio	River carpsucker
Cycleptus elongatus	Blue sucker
Cyprinella lutrensis	Red shiner
Cyprinella venusta	Blacktail shiner
Cyprinodon variegatus	Sheepshead minnow
Cyprinus carpio	Common carp
Dorosoma cepedianum	Gizzard shad
Dorosoma petenense	Threadfin shad
Etheostoma gracile	Slough darter
Fundulus chrysotus	Golden topminnow
Fundulus grandis	Gulf killifish
Fundulus notatus	Blackstripe topminnow
Fundulus pulvereus	Bayou killifish
Gambusia affinis	Western mosquitofish
Ictalurus furcatus	Blue catfish
Ictalurus punctatus	Channel catfish
Ictiobus bubalus	Smallmouth buffalo
Lepisosteus oculatus	Spotted gar

Table 7. Fish Species Reported in the Study Area(Lee et al. 1980; Hubbs et al. 1991)

Table 7 cont'd.

Lepisosteus osseus	Longnose gar
Lepisosteus spatula	Alligator gar
Lepomis auritus	Redbreast sunfish
Lepomis cyanellus	Green sunfish
Lepomis gulosus	Warmouth
Lepomis humilis	Orangespotted sunfish
Lepomis macrochirus	Bluegill
Lepomis megalotis	Longear sunfish
Lepomis microlophus	Redear sunfish
Lepomis punctatus	Spotted sunfish
Lythrurus fumeus	Ribbon shiner
Macrhybopsis aestivalis	Speckled chub
Menidia beryllina	Inland silverside
Micropterus treculi	Guadalupe bass
Micropterus salmoides	Largemouth bass
Morone chrysops	White bass
Mugil cephalus	Stiped mullet
Notemigonus crysoleucas	Golden shiner
Notropis amnis	Pallid shiner
Notropis buchanani	Ghost shiner
Notropis shumardi	Silverband shiner
Notropis texanus	Weed shiner
Notropis volucellus	Mimic shiner
Noturus gyrinus	Tadpole madtom
Opsopoeodus emiliae	Pugnose minnow
Percina macrolepida	Bigscale logperch
Pimephales promelas	Fathead minnow
Pimephales vigilax	Bullhead minnow
Pomoxis annularis	White crappie
Pomoxis nigromaculatus	Black crappie
Pylodictis olivaris	Flathead catfish
Syngnathus scovelli	Gult pipefish

Map	Scientific name	Common name	Fed.	State
code*			Status	Status
	AMPHIBIANS			
1	Bufo houstonensis	Houston toad	LE	E
	BIRDS			
2	Ammodramus henslowii	Henslow's sparrow		
3	Buteo albicaudatus	White-tailed hawk		Т
4	Charadrius montanus	Mountain plover	PT	
5	Egretta rufescens	Reddish egret		Т
6	Falco peregrinus anatum	American peregrine falcon	LE	E
7	Falco peregrinus tundrius	Arctic peregrine falcon	E/SA	Т
8	Grus americana	Whooping crane	LE	E
9	Haliaeetus leucocephalus	Bald eagle	LT	Т
10	Mycteria americana	Wood stork		Т
11	Numenius borealis	Eskimo curlew	LE	E
12	Pelecanus occidentalis	Brown pelican	LE	E
13	Plegadis chihi	White-faced ibis		Т
14	Sterna antillarum athalassos	Interior least tern	LE	E
15	Tympanuchus cupido attwateri	Attwater's greater prairie- chicken	LE	E
	FISHES			
16	Micropterus treculi	Guadalupe bass		
	MAMMALS			
17	Spilogale putorius interrupta	Plains spotted skunk		
10	KEPTILES	Timber/Conchrolys rottlesselve		т
18	Crotalus norriaus	Timber/Canebrake rattlesnake		I T
19	Gopherus berlandieri	Texas tortoise	C1	1
20	Graptemys caglel	Cagle's map turtle	CI	т
21	Liochiorophis vernalis Malaolamus tomania littonalia	Smooth green shake		1
22	Malaciemys terrapin ittoralis	Culf saltmarsh analys		
23		Guil saitmarsh shake		т
24 25	Thermorphic sinteling and optime	Texas normed lizard		1
25	VASCULAR PLANTS	rexas garter snake		
26	Psilactis heterocarpa	Welder machaeranthera		
27	Thurovia triflora	Threeflower broomweed		

Table 8. Species of Special Concern in the Study Area (Texas Parks and Wildlife Department 1998a)

* Lookup code for map of Figure 6.
 Status Code: LE, LT – Federally Listed Endangered/Threatened; E/SA – Federally Endangered by Similarity of Appearance; E, T – State Endangered/Threatened; PT – Federally Proposed Threatened;
 C1 – Federal Candidate, Category 1, information supports proposing to list as endangered/threatened.

Birds and Waterfowl

Many species of neotropical songbirds, wintering shorebirds, and a large number of waterfowl stop-over in the study area to feed and rest along the river banks and creek bottoms. The Special Species List (Texas Parks and Wildlife Department 1998a) for the study area includes 14 birds (Table 8), some of which are riparian and/or wetland dependent. Several of the birds occur in the study area only as migrants (i.g. peregrine falcon, whooping crane). Migrating peregrine falcons utilize wetlands as they prey mostly on ducks and shorebirds. Migrating whooping cranes use wetlands for feeding and roosting. An extensive list of birds observed in Lake Texana State Park can be obtained at the park headquarters (also see http::www.tpwd.state.tx.us/park/laketexa/laketexa.htm).

Mammals, Amphibians, and Reptiles

There are 1,100 vertebrate species in Texas, 60 of which are endemic to the state (Texas Audubon Society 1997). There are at least 87 species of mammals (Table 9), amphibians (Table 10), and reptiles (Table 11), listed in the Texas Parks and Wildlife Biological Conservation Database (BCD), present in the study area.

The plains spotted skunk is the only mammal in Table 9 that is listed in the Special Species List. Table 10 includes one amphibian that is listed in the Special Species List, the Houston toad. Table 11 includes eight reptiles that are listed in the Special Species List (Table 8), the timber rattlesnake, Texas horned lizard, Texas garter snake, Texas tortoise, Cagle's map turtle, smooth green snake, Texas diamondback terrapin, and the Gulf saltmarsh snake. Figure 6 shows the county distribution of those species listed on the Special Species List.

The Houston Toad, a federally and state listed endangered species is found only in a small pocket of southeastern Texas, including Austin, Bastrop, Burleson, Colorado, Lavaca, Leon, Milam, and Robertson Counties. It is found in pine forests and prairies with sandy ridges (Texas Parks and Wildlife 1999).

The Houston Toad is endangered because many small natural breeding ponds have been drained. Clearing natural vegetation and planting pasture grasses such as bermudagrass also eliminates habitat. Also, fire ants may kill young toads as they leave the pond (Texas Parks and Wildlife 1999).

The Texas garter snake is found in wet or moist microhabitats, but not necessarily restricted to them. It hibernates underground or under surface cover. The Timber/Canebrake rattlesnake occurs in swamps, floodplains, upland pine, deciduous woodlands, riparian zones, and abandoned farms.

The Cagle's map turtle is endemic to the Guadalupe River System. It occurs in short stretches of shallow water with swift to moderate flow and gravel or cobble bottom, connected to deeper pools with a slower flow rate and a silt or mud bottom. It nests on gently sloping sand banks within 30 feet of the water.

Scientific Name	Common Name			
Baiomys taylori	Northern pygmy mouse			
Canis rufus	Red wolf (extirpated)			
Chaetodipus hispidus	Hispid pocket mouse			
Didelphis virginiana	Virginia opossum			
Geomys attwateri	Attwater's pocket gopher			
Lasiurus borealis	Eastern red bat			
Lepus californicus	Black-tailed jack rabbit			
Mephitis mephitis	Striped skunk			
Neotoma floridana	Eastern woodrat			
Oryzomys palustris	Marsh rice rat			
Peromyscus leucopus	White-footed mouse			
Peromyscus maniculatus	Deer mouse			
Reithrodontomys fulvescens	Fulvous harvest mouse			
Sciurus niger	Eastern fox squirrel			
Sigmodon hispidus	Hispid cotton rat			
Spermophilus tridecemlineatus	Thirteen-lined ground squirrel			
Spilogale putorius interrupta	Plains spotted skunk			
Sylvilagus floridanus	Eastern cottontail			
Urocyon cinereoargenteus	Gray fox			

Table 9. Mammals of the Study Area (Davis and Schmidly 1994;Texas Parks and Wildlife Department 1998a)

Table 10. Amphibians of the Study Area (Texas Parks
and Wildlife Department 1998a)

Scientific Name	Common Name
Acris crepitans	Northern cricket frog
Ambystoma texanum	Smallmouth salamander
Bufo houstonensis	Houston toad
Bufo speciosus	Texas toad
Bufo valliceps	Gulf coast toad
Bufo woodhousii	Woodhouse's toad
Gastrophryne carolinensis	Eastern narrowmouth toad
Gastrophryne olivacea	Great plains narrowmouth toac
Hyla chrysoscelis	Cope's gray treefrog
Hyla cinerea	Green treefrog
Hyla versicolor	Northern gray treefrog
Notophthalmus viridescens	Eastern newt
Pseudacris clarkii	Spotted chorus frog
Pseudacris streckeri	Strecker's chorus frog
Pseudacris triseriata	Striped chorus frog
Rana catesbeiana	Bullfrog
Rana sphenocephala	Southern leopard frog
Scaphiopus holbrookii	Eastern spadefoot
Siren intermedia	Lesser siren

Scientific Name	Common Name
Agkistrodon contortrix	Copperhead
Agkistrodon piscivorus	Cottonmouth
Alligator mississippiensis	American alligator
Anolis carolinensis	Green anole
Chelydra serpentina	Snapping turtle
Cnemidophorus gularis	Texas spotted whiptail
Cnemidophorus sexlineatus	Six-lined racerunner
Coluber constrictor	Racer
Crotalus atrox	Western diamondback rattlesnake
Crotalus horridus	Timber (canebrake) rattlesnake
Deirochelys reticularia	Chicken turtle
Elaphe obsoleta	Black rat snake
Eumeces fasciatus	Five-lined skink
Eumeces laticeps	Broadhead skink
Eumeces septentrionalis	Prairie skink
Farancia abacura	Mud snake
Gopherus berlandieri	Texas tortoise
Graptemys caglei	Cagle's map turtle
Hemidactylus turcicus	Mediterranean gecko
Heterodon platirhinos	Eastern hognose snake
Kinosternon flavescens	Yellow mud turtle
Kinosternon subrubrum	Eastern mud turtle
Lampropeltis calligaster	Prairie kingsnake
Lampropeltis getula	Common kingsnake
Liochlorophis aestivus	Rough green snake
Malaclemys terrapin littoralis	Texas diamondback terrapin
Masticophis flagellum	Coachwhip
Micrurus fulvius	Eastern coral snake
Nerodia cyclopion	Green water snake
Nerodia erythrogaster	Plainbelly water snake
Nerodia fasciata	Southern water snake
Nerodia rhombifer	Diamondback water snake
Ophisaurus attenuatus	Slender glass lizard
Phrynosoma cornutum	Texas horned lizard
Pseudemys texana	Texas river cooter
Regina grahamii	Graham's crayfish snake
Sceloporus undulatus	Eastern fence lizard
Scincella lateralis	Ground skink
Sistrurus miliarius	Pigmy rattlesnake
Storeria dekayi	Brown snake
Tantilla gracilis	Flathead snake
Terrapene carolina	Eastern box turtle

Table 11. Reptiles of the Study Area (Texas Parks and
Wildlife Department 1998a)

Table 11 cont'd.	
rrapene ornata	Wes
amnonhis marcianus	Che

Terrapene ornata	Western box turtle
Thamnophis marcianus	Checkered garter snake
Thamnophis proximus	Western ribbon snake
Trionyx muticus	Smooth softshell
Trionyx spiniferus	Spiny softshell
Virginia striatula	Rough earth snake

Conclusions

Region P has a variety of valuable aquatic, wetland, riparian, and estuarine habitats. The estuary of the Lavaca and Navidad Rivers provides habitats for economically important and ecologically characteristic marine and estuarine animals as well as for freshwater and terrestrial animals. This is true also for the smaller estuarine reach of Garcitas Creek from Lavaca Bay upstream to the Arenosa Creek confluence. The estuarine habitats are in southern Jackson County.

Extensive pecan-elm type bottomland hardwood forests occur along several rivers and streams in Jackson and Wharton Counties. The Lavaca River, Garcitas Creek, Arenosa Creek, West Carancahua Creek, and West Mustang Creek all satisfy at least one of the criteria for ecologically unique river and stream segments. These include: the Lavaca River from the Navidad river confluence upstream about 20 miles; the Navidad River west of Lake Texana; Sandy Creek and its tributaries north of Lake Texana in Jackson County and Wharton Counties; and West and East Carancahua Creeks in southeastern Jackson County. Arenosa Creek on the Western border of Jackson County and West Mustang Creek in Jackson and Wharton Counties have also been identified as ecologically significant stream segments (see Appendix C & D).

Lake Texana, in Jackson County, also supports fringing wetland and bottomland habitats as well as several recreational areas, including Lake Texana State Park, that are economic assets to the region.

The above habitats include 9 sites on the Texana loop of the Great Texana Coastal Birding Trail, all in Jackson County. These are also of high economic value to the region.

References

Bauer J., R. Frye, and B. Spain. 1991. A Natural Resource Survey for Proposed Reservoir Sites and Selected Stream Segments in Texas. Texas Parks and Wildlife Dept., PWD-BK-0300-06 7/91, Austin, Texas.

Bayer, C.W., J.R. Davis, S.R. Twidwell, R. Kleinsasser, G. Linam, K. Mayes, and E. Hornig. 1992. Texas Aquatic Ecoregion Project: An Assessment of Least Disturbed Streams (draft). Texas Water Commission, Austin. Texas Parks and Wildlife Department, Austin. U.S. Environmental Protection Agency, region VI, Dallas, Texas.

Brune, G. 1981. Springs of Texas: Vol. I. Branch-Smith, Inc. Fort Worth, Texas.

Crompton, J.L., T.Var, and S. Lee. 1998. Repositioning TPWD and Local Park and Recreation Agencies. Texas A&M Univ., Dept. of Recreation, Parks and Tourism Sciences, College Station, Texas.

Dallas Morning News. 1997. Texas Almanac. Texas A&M Consortium, College Station, Texas.

Davis, J.R. 1998. Personal communication. Texas Natural Resource Conservation Commission, Austin, Texas.

Davis, W.B., and D.J. Schmidly. 1994. The Mammals of Texas. Texas Parks and Wildlife. University of Texas Press, Austin, Texas.

Garrett, J.M., and D.G. Barker. 1987. A Field Guide to Reptiles and Amphibians of Texas. Texas Monthly Fieldguide Series. Gulf Publishing Company. Houston, Texas.

Godfrey, C.L., G.S. Mackree, and H. Oaks. 1973. General Soil Map of Texas. Texas Agricultural Experiment Station, Texas A&M University and the Soil Conservation Service, U.S. Department of Agriculture.

Howells, R.G., R.W. Neck, and H.D. Murray. 1996. Freshwater Mussels of Texas. Texas Parks and Wildlife Department, Inland Fisheries Division. Texas Parks and Wildlife Press.

Howells, R.G., C.M. Mather, and J.A.M. Bergmann. 1997. Conservation Status of Selected Freshwater Mussels in Texas. Pages 117-128 *in* K.S.Cummings, A.C. Buchanan, C.A. Mayer, and T.J. Naimo, eds. Conservation and Management of Freshwater Mussels II: Initiatives for the Future. Proc. of a UMRCC Symposium, 16-18 Oct. 1995, St. Louis, MO. Upper Mississippi River Conservation Committee, Rock Island, Illinois. Hubbs, C., R.J. Edwards, and G.P. Garrett. 1991. An annotated checklist of the freshwater fishes of Texas, with keys to identification of species. Texas Journal of Science 43(4): 1-56.

Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister, and J.R. Stauffer, Jr. 1980 et seq. Atlas of North American Freshwater Fishes. North Carolina State Museum of Natural History, Raleigh, North Carolina. 854 pp.

Lyndon B. Johnson School of Public Affairs. 1978. Preserving Texas' Natural Heritage. Natural Heritage Policy Research Project Report No. 31, Univ. of Texas at Austin.

McMahan, C.A., R. Frye, and K.L. Brown. 1984. The Vegetation Types of Texas Including Cropland: An Illustrated Synopsis to Accompany the Map. Wildlife Division, Texas Parks and Wildlife Department.

Natural Resources Conservation Service. No Date. Soils Information Including Soil Component Data and Soils. State Soil and Geographic (STATSGO) Database. U.S. Department of Agriculture.

Ortego, B. 1999. Personal communication. Texas Parks and Wildlife Department, Victoria, Texas.

Texas Auduban Society. 1997. Facts About Texas's Birds, Wildlife, and Habitat: A Texas Briefing Guide for Policy Makers. The Audubon Society, Austin, Texas.

Texas Parks and Wildlife Department. 1998a. Texas Biological and Conservation Data System (TXBCD). Texas Parks and Wildlife Department, Austin, Texas.

Texas Parks and Wildlife Department. 1998b. Texas Parks and Historic Sites. [Online] Available at http://www.tpwd.state.tx.us/park/.

Texas Parks and Wildlife Department. 1999. Endangered and Threatened species: The Houston Toad. [Online] Available at http://www.tpwd.state.tx.us/nature/endang/htoad.htm

Texas Water Development Board. 1997. Water for Texas: Today and Tomorrow. A Consensus-Based Update to the State Water Plan. TWDB Document No. GP-6-2.

Texas Water Development Board. 1998. Counties Population Projections in Texas. [Online] Available at http://www.twdb.state.tx.us.

APPENDIX A

Scientific Names of Plants Mentioned (from McMahan et al. 1984)

APPENDIX A

Scientific Names of Plants Mentioned

American beautyberry Ash, green

Baccharis Bermudagrass Bluestem, bushy _____, little

_____, silver _____, slender Buffalograss Bulrush, California _____, Olney's _____, saltmarsh

Coral-berry Cordgrass, Gulf _____, marshhay Cottonwood Cypress, bald

Dewberry

Elm, American ____, cedar

Frostweed

Grape, mustang Greenbriar

Hackberry Hawthorn Hickory, black Huisache

Johnsongrass

Lovegrass, sand

Mesquite

Callicarpa americana Fraxinus pennsylvanica

Baccharis spp. Cynodon dactylon Andropogon glomeratus Schizachyrium scoparium var. frequens Bothriochloa saccharoides Schizachyrium tenerum Buchloe dactyloides Scirpus californicus S. americanus S. maritimus

Symphoricarpos orbiculatus Spartina spartinae S. patens Populus deltoides Taxodium distichum

Rubus spp.

Ulmus americana U. crassifolia

Verbesina virginica

Vitis mustangensis Smilax spp.

Celtis spp. Crataegus spp. Carya texana Acacia farnesiana

Sorghum halepense

Eragrostis trichodes

Prosopis glandulosa

Oak, blackjack ____, live ____, post ____, sandjack ____, water

Panicum, beaked Paspalum , brownseed ______, seashore ______, single-spike Pecan Poison oak

Ragweed, western Reed, common Redcedar, eastern Rescuegrass Rose, Macartney

Smutgrass Sprangle-grass Supplejack Sycamore

Three-awn Tickclover Trumpet creeper

Virgin's bower

Widgeon grass Wildrye, Canada _____, Virginia Willow, black Windmillgrass

Yaupon

Quercus marilandica Q. virginiana Q. stellata Q. incana Q. nigra

Panicum anceps Paspalum plicatulum P. vaginatum P. monostachyum Carya illinoinensis Rhus toxicodendron

Ambrosia psilostachya Phragmites australis Juniperus virginiana Bromus unioloides Rosa bracteata

Sporobolus indicus Chasmanthium sessiliflorum Berchemia scandens Platanus occidentalis

Aristida spp. Desmondium spp. Campsis radicans

Clematis virginiana

Ruppia maritima Elymus canadensis E. virginicus Salix nigra Chloris spp.

Ilex vomitoria

APPENDIX B

Estimated Economic Importance of Selected TPWD Facilities (from Crompton et al. 1998)

LAKE TEXANA STATE RECREATION AREA

JACKSON COUNTY

AVERAGE PARTY SIZE:

Day Visitors = 3.62 Overnight Visitors = 3.41

AVERAGE DISTANCE TRAVELED TO SITE:

Day Visitors = 72.6 Miles

Overnight Visitors = 100.6 Miles

ACTUAL 1997 VISITATION (Fiscal Year): Day Visitors = 556,092 Overnight Visitors = 58,659

PERCENT OF OUT-OF-COUNTY VISITORS:

Day Visitors = 80.95

Overnight Visitors = 94.43

PER PERSON PER DAY EXPENDITURES									
Sector		Day Visitors*		C	Overnight Visitors				
	Adjacent	Enroute	Total	Adjacent	Enroute	Total	Average		
Transportation	\$1.68	\$1.88	\$3.56	\$1.68	\$0.45	\$2.12	\$2.84		
Food	2.69	1.47	4.17	4.21	0.65	4.86	4.51		
Lodging	0.31	0.15	0.46	0.04	0.00	0.04	0.25		
Other	1.01	0.15	- 1.16	1.07	0.00	1.07	1.12		
Total	5.70	3.65	9.35	6.99	1.10	8.09	8.72		

ESTIMATED ANNUAL ECONOMIC IMPACT ON SALES

Sector	Day Visitors*			· (Visitor		
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$755,125	\$755,125	\$1,049,171	\$92,918	\$92,918	\$129,100	\$1,178,271
Food	1.211.854	1.211.854	2,164,249	233,044	233,044	416,194	2,580,443
Lodging	140.063	140,063	237,170	2,248	2,248	3,807	240,976
Other	456,729	456,729	882,400	59,198	59,198	114,370	996,770
Total	2,563,771	2,563,771	4,332,989	387,408	387,408	663,471	4,996,460

ESTIMATED ANNUAL ECONOMIC IMPACT ON PERSONAL INCOME

Sector	Day Visitors*			Overnight Visitors			Visitor
•	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$755,125	\$330,292	\$401,047	\$92,918	\$40,642	\$49,349	\$450,396
Food	1.211.854	354,588	572,601	233,044	68,189	110,113	682,714
Lodging	140.063	38,952	62,090	2,248	625	997	63,087
Other	456,729	152,410	253,621	59,198	19,754	32,873	286,494
Total	2,563,771	876,242	1,289,359	387,408	129,211	193,331	1,482,691

ESTIMATED ANNUAL ECONOMIC IMPACT ON EMPLOYMENT

Sector	Day Visitors*			Overnight Visitors			Visitor	
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total	
Transportation	\$755,125	10.62	15.43	\$92,918	1.31	1.90	17.33	
Food	1.211.854	39.56	55.22	233,044	7.61	10.62	65.84	
Lodging	140.063	3.27	4.88	2,248	0.05	0.08	4.96	
Other	456,729	20.11	27.36	59,198	2.61	3.55	30.90	
Total	2,563,771	73.56	102.88	387,408	11.57	16.14	119.03	

* Average PPPD expenditure data for Texas State Recreation Areas were used.

LAKE TEXANA STATE RECREATION AREA

JACKSON COUNTY

AVERAGE PARTY SIZE: Day Visitors = 3.62 Overnight Visitors = 3.41

AVERAGE DISTANCE TRAVELED TO SITE:

Day Visitors = 72.6 miles Overnight Visitors = 100.6 miles

ACTUAL 1997 VISITATION (Fiscal Year): Day Visitors = 556,092 Overnight Visitors = 58,659

And the second

PERCENT OF OUT-OF-COUNTY VISITORS:

Day Visitors = 80.95 Overnight Visitors = 94.43

PER PERSON PER DAY EXPENDITURES									
Sector		Day Visitors*		(Overnight Visitors				
	Adjacent	Enroute	Total	Adjacent	Enroute	Total	Average		
Transportation	\$1.68	\$1.88	\$3.56	\$1.68	\$0.45	\$2.12	\$2.84		
Food	2.69	1.47	4.17	4.21	0.65	4.86	4.51		
Lodging	0.31	0.15	0.46	0.04	0.00	0.04	0.25		
Other	1.01	0.15	1.16	1.07	0.00	1.07	1.12		
Total	5.70	3.65	9.35	6.99	1.10	8.09	8.72		

ESTIMATED ANNUAL ECONOMIC SURGE ON SALES (Including Local Visitors)

Sector	Day Visitors*			Overnight Visitors			Visitor
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$932,829	\$932,829	\$1,296,072	\$98,399	\$98,399	\$136,715	\$1,432,788
Food	1,497,040	1,497,040	2,673,563	246,791	246,791	440,743	3,114,307
Lodging	173,025	173,025	292,983	2,381	2,381	4,031	297.014
Other	564,211	564,211	1,090,056	62,690	62,690	121,116	1,211,172
Total	3,167,104	3,167,104	5,352,674	410,260	410,260	702,606	6,055,280

ESTIMATED ANNUAL ECONOMIC SURGE ON PERSONAL INCOME (Including Local Visitors)

Sector	Day Visitors*			(Overnight Visitors		
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$932,829	\$408,019	\$495,425	\$98,399	\$43,040	\$52,260	\$547,685
Food	1,497,040	438,034	707,351	246,791	72,211	116,609	823,960
Lodging	173,025	48,118	76,702	2,381	662	1,055	77,757
Other	564,211	188,277	313,306	62,690	20,920	34,812	348,118
Total	3,167,104	1,082,448	1,592,785	410,260	136,832	204,735	1,797,520

ESTIMATED ANNUAL ECONOMIC SURGE ON EMPLOYMENT (Including Local Visitors)

Sector	Day Visitors*			Overnight Visitors			Visitor
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$932,829	13.12	19.06	\$98,399	1.38	2.01	21.07
Food	1,497,040	48.87	68.22	246,791	8.06	11.25	79.46
Lodging	173,025	4.04	6.03	2,381	0.06	0.08	6.11
Other	564,211	24.84	33.80	62,690	2.76	3.76	37.55
Total	3,167,104	90.87	127.10	410,260	12.26	17.09	144.19

* Average PPPD expenditure data for Texas State Recreation Areas were used.

APPENDIX C

TPWD Information Supporting River and Stream Segment Designations Texas Parks and Wildlife Department Draft List of Texas streams and rivers satisfying at least one of the criteria defined in Senate Bill 1 for ecologically unique river and stream segments.

REGION P (LAVACA)

Arenosa Creek - From the confluence with Garcitas Creek in Jackson/Victoria County upstream to its headwaters along the northern boundary of Victoria County

Aq. Life: Ecoregion Stream¹; Benthic macroinvertebrates^{1,2}

Garcitas Creek - From the confluence with Lavaca Bay in Jackson/Victoria/Calhoun County upstream to the Arenosa Creek confluence in Jackson/Victoria County

Aq. Life: Ecoregion Stream, Dissolved oxygen¹; Benthic macroinvertebrates^{1,2} End/Threat: One of only a few locales in Texas where Texas palmetto occurs naturally³²; Diamondback terrapin³²

Biol. Function: Extensive estuarine wetland habitat

Lavaca River - From the confluence with Lavaca Bay in Calhoun/Jackson County to a point 5.3 miles downstream of US 59 in Jackson County (TNRCC stream segment 1601) Biol. Function: Extensive freshwater and estuarine wetland habitat¹⁴ End/Threat: Diamondback terrapin³² Hydrologic Function: Forested riparian habitats perform all hydrologic functions

West Carancahua Creek - From the confluence with Carancahua Creek in Jackson County upstream to the FM 111 crossing east of Edna in Jackson County

Aq. Life: Ecoregion Stream, Dissolved oxygen¹; Benthic macroinvertebrates^{1,2} Hydrologic Function: Forested riparian habitats perform all hydrologic functions

West Mustang Creek - From the point where East Mustang Creek and West Mustang Creek join to form Mustang Creek in Jackson County upstream to FM 1160 in Wharton County Aq. Life: Ecoregion Stream¹; Benthic macroinvertebrates^{1,2}

REFERENCES

- ¹ Bayer, C.W., J.R. Davis, S.R. Twidwell, R. Kleinsasser, G. Linam, K. Mayes, and E. Hornig. 1992. Texas aquatic ecoregion project: an assessment of least disturbed streams (draft). Texas Water Commission, Austin, Texas.
- ² Davis, J.R. 1998. Personal communication. Texas Natural Resource Conservation Commission, Austin, Texas.
- ¹⁴Bauer J., R. Frye, and B. Spain. 1991. A Natural Resource Survey for Proposed Reservoir Sites and Selected Stream Segments in Texas. Texas Parks and Wildlife Dept., PWD-BK-0300-06 7/91, Austin, Texas
- ³² Ortego, B. 1999. Personal communication. Texas Parks and Wildlife Department, Victoria, Texas.

Appendix D

§357.8 Ecologically Unique River and Stream Segments

Title 31. NATURAL RESOURCES AND CONSERVATION

Part X. TEXAS WATER DEVELOPMENT BOARD

Chapter 357. REGIONAL WATER PLANNING GUIDELINES

§ 357.8 Ecologically Unique River and Stream Segments

(a) Regional water planning groups may include in adopted regional water plans recommendations for all or parts of river and stream segments of unique ecological value located within the regional water planning area by preparing a recommendation package consisting of a physical description giving the location of the stream segment, maps, and photographs of the stream segment and a site characterization of the stream segment documented by supporting literature and data. The recommendation package shall address each of the criteria for designation of river and stream segments of ecological value found in subsection (b) of this section. The regional water planning group shall forward the recommendation package to the Texas Parks and Wildlife Department and allow the Texas Parks and Wildlife Department 30 days for its written evaluation of the recommendation. The adopted regional water plan shall include, if available, Texas Parks and Wildlife Department's written evaluation of each river and stream segment recommended as a river or stream segment of unique ecological value.

(b) A regional water planning group may recommend a river or stream segment as being of unique ecological value based upon the following criteria:

(1) biological function--stream segments which display significant overall habitat value including both quantity and quality considering the degree of biodiversity, age, and uniqueness observed and including terrestrial, wetland, aquatic, or estuarine habitats;

(2) hydrologic function--stream segments which are fringed by habitats that perform valuable hydrologic functions relating to water quality, flood attenuation, flow stabilization, or groundwater recharge and discharge;

(3) riparian conservation areas--stream segments which are fringed by significant areas in public ownership including state and federal refuges, wildlife management areas, preserves, parks, mitigation areas, or other areas held by governmental organizations for conservation purposes, or stream segments which are fringed by other areas managed for conservation purposes under a governmentally approved conservation plan;

(4) high water quality/exceptional aquatic life/high aesthetic value--stream segments and spring resources that are significant due to unique or critical habitats and exceptional aquatic life uses dependent on or associated with high water quality; or

(5) threatened or endangered species/unique communities--sites along streams where water development projects would have significant detrimental effects on state or federally listed

threatened and endangered species, and sites along streams significant due to the presence of unique, exemplary, or unusually extensive natural communities.

Source: The provisions of this § 357.8 adopted to be effective March 11, 1998, 23 TexReg 2338.